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Fig. 3: The designed gripper (left) and its realization (right).

Internally, a spring allows the shaft to retract during take off
and landing to avoid damaging the gripper, and it also provides
axial compliance when grasping. The shaft is connected to the
end effector of the gripper via a ball-and-socket joint. The
end effector is the core of the gripper; an electro-permanent
magnet OpenGrab EPM v37 that combines the advantages of
electro and permanent magnets and creates a strong magnetic
contact with the ferrous object. The payload capacity of the
electromagnet is determined by

F = mogs (1)

where F is the required nominal force, mo the object mass and
s is a safety factor, which needs to be properly selected still
allow an effective object release, independently of the grasping
location on the object surface.

We also must account for the decrease in the available
holding force of the magnet, which is perpendicular to the
end effector magnet plane, in case its direction is not parallel
to the gravity one. It was experimentally verified that a holding
force of the ferrite magnet decreases by nearly 85% in shear.
Using a maximum rotation of 45◦ of the magnet results in
a decrease of approximately 42% in holding strength. This
is then accounted for in the above equation with the safety
factor. The total weight of the proposed gripper design is 175
g. The EPM Gripper works by taking a 5 V 1 A power to
switch states, and it does not require constant power. Finally,
another key component is a spherical joint between the shaft
and the EPM, which allows mechanical decoupling of the
relative rotation between the platform and the object.

Out of the box, the EPM does not provide any feedback
information required to identify a successful grasping. How-
ever, this kind of feedback is critical for good performance of
the system. Without it, in the case of unsuccessful grasping,
the vehicles would use precious battery time flying to the drop
location and back, without carrying anything. To address this
problem, two Hall effect sensors are installed on the sides
of the EPM. When a ferrous object is attached, the magnetic
field around the magnet changes. This is reflected by a change
in the output voltage of the Hall effect sensors. To prevent
false-positive detections, a short calibration is done before
each grasping attempt during which 100 samples of the output

7http://nicadrone.com/index.php?id product=72&controller=product

voltages are averaged and experimentally a new threshold is
set above the average. If the measured voltage exceeds the set
threshold, a successful grasp is signaled. Likewise, if the object
is dropped during flight, the measured voltage drops below the
threshold and an object loss is signaled, which allows the MAV
to abort the delivery and attempt grasping another object.

A custom board was designed to provide a low-level in-
terface between the main computer, the gripper, and a serial
radio module. This board uses an 8-bit ATxmega 128A4U8

microcontroller and an FT232RL9 USB serial driver to com-
municate with the main computer. The gripper is controlled by
a PWM signal, and the feedback voltage from the Hall effect
sensors is measured by the microcontroller’s ADCs. The board
is also fitted with a socket to accommodate an XBee Pro radio
module, which is used to relay RTK corrections from the base-
station to the RTK GPS module. A low-level architecture is
shown in Fig. 4. We release the reference files to make and

Fig. 4: The low-level interface with communication and feedback.
3D print the gripper as well as a self contained code so that
anyone can interface the gripper with a µController10.

III. MODELING AND CONTROL

The position controller uses the estimated state as feed-
back to follow trajectories given as an output of the high-

8http://www.microchip.com/wwwproducts/en/ATxmega128A4U
9http://www.ftdichip.com/Products/ICs/FT232R.htm
10https://github.com/loiannog/MBZIRCgripper
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level trajectory planner. In many previous works, because
the attitude dynamics can be assumed to be faster than the
dynamics governing the position, linearized controllers are
used for both loops [24], [25]. However, we need the system
to be capable of large deviations from the hover configuration
during operations like fast mapping of objects or for heavy
wind compensation, so we use a nonlinear controller. Let us
consider an inertial reference frame denoted by [e1 , e2 , e3]
and a body reference frame centered in the center of mass of
the vehicle with an orientation denoted by R = [b1 , b2 , b3]
where R ∈ SO(3). The dynamic model of the vehicle can be
expressed as

ẋ = v, mv̇ = fRe3 −mge3,

Ṙ = RΩ̂, JΩ̇ + Ω× JΩ = M,
(2)

where x ∈ R3 is the Cartesian position of the vehicle expressed
in the inertial frame, v ∈ R3 is the velocity of the vehicle in the
inertial frame, m ∈ R is the mass, which includes the mass
of the object during the grasping phase using the feedback
mechanism described in the previous section, f ∈ R is the
net thrust, Ω ∈ R3 is the angular velocity in the body-fixed
frame, and J ∈ R3×3 is the inertia matrix with respect to
the body frame. The hat symbol ·̂ denotes the skew-symmetry
operator according to x̂y = x × y for all x,y ∈ R3, g is
the standard gravitational acceleration and e3 = [0 0 1]

>.
The total moment M ∈ R3, with M = [M1 M2 M3]

>,
along all axes of the body-fixed frame and the thrust f ∈ R
are control inputs of the plant. The dynamics of rotors and
propellers are neglected and it is assumed that the force of each
propeller is directly controlled. The total thrust, f =

∑6
j=1 fj ,

acts in the direction of the z axis of the body-fixed frame,
which is orthogonal to the plane defined by the centers of the
six propellers. The relationship between a single motor thrust
fj , the net thrust f , and the moments M can be written as

 f
M1

M2

M3

 =

 1 1 1 1 1 1
sd 1 sd −sd −1 −sd
−cd 0 cd cd 0 −cd
−1 1 −1 1 −1 1



f1

f2

f3

f4

f5

f6

 (3)

where c = cos (30◦), s = sin (30◦) and d is the distance from
the center of mass to the center of each rotor in the b1, b2

plane. For non-zero values of d, eq. (3) can be inverted using
the right pseudo-inverse.

For control, we build on the work in [26] and [27] with
control inputs f ∈ R and M ∈ R3 chosen as

f =−
(
−kxex − kibR

t∫
0

R(τ)>exdτ − kiw
t∫

0

exdτ

− kvev −mge3 +mẍd

)
·Re3,

(4)

M =− kReR − kΩeΩ + Ω× JΩ

− J
(
Ω̂R>RcΩc −R>RcΩ̇c

)
,

(5)

with ẍd the desired acceleration, kx, kib, kv , kR, kΩ positive
definite terms. We extend the referenced controllers by includ-
ing two integral terms, which accumulate error in the body
frame and the world frame, respectively. In another work [28],
an integral action is considered in the world frame. These terms
are extremely important considering the operating conditions
of strong and inconsistent wind, for example around dunes
in the desert. Both terms provide the opportunity to capture
external disturbances (e.g., wind) separately from internal
disturbances (e.g., an inefficient prop or a payload imbalance),
particularly when the vehicle is permitted to yaw or rotate
about the vertical axis. The thrust and moments are then
converted to motor rates according to the characteristic of the
proposed vehicle. The subscript C denotes a commanded value
and RC = [b1,C , b2,C , b3,C ] is calculated as

b2,des = [− sinψdes, cosψdes, 0]
>
, b3,C =

f

||f || ,

b1,C =
b2,des × b3

||b2,des × b3||
, b2,C = b3 × b1,

Ω̂C = R>CṘC . (6)

where ṘC . is obtained differentiating with respect to time the
vector elements composing RC . Note that here we have to
define b2,des based on the yaw instead of defining b1,des as
done in [27] due to a different Euler angle convention (we use
the ZYX convention instead of ZXY). The error quantities eR,
eΩ, ex, ev are defined in [26], and they represent the orienta-
tion, angular rate errors, and translation errors respectively. The
symbol .∨ represent the vee map so(3)→ R3. The exponential
stability has been proved for a similar PID controller in [28].

IV. TRAJECTORY PLANNING

Given a pre-defined rectangular area to scan by a team
of MAVs, the task first involves generating collision free
trajectories for each MAV. Secondly, we must avoid inter-
MAV collisions when grasped objects have to be dropped in
a common assigned box. A common way for area coverage
is to use a Zamboni pattern or a lawn mover pattern. Path
planning for such a problem is described as Coverage Path
Planning (CPP) [29], where for a given area the CPP provides
a path from which the entire workplace can be scanned with
an onboard camera. The work in [30] combines graph search
techniques and spline-based methods to provide a solution for
multi-robot coverage with requirements for sensor resolution
and field-of-view.

Instead of solving a combined multi-robot path planning
coverage problem, we choose a simple area decomposition
method and then assign an independent zone for each MAV to
localize and collect objects. The required coverage area is split
into equally-sized zones and guarantees that no paths intersect
during the coverage phase. Each MAV plans the coverage path
using the Boustrophedon coverage [31] in its zone as shown
in Fig. 5. A reduced field of view is used for the planning
and is set based on the required overlap in the coverage (set
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to 20%) and on the real FOV camera projection to the ground
plane with respect to the sweeping altitude.

While following the trajectory, the MAV detects and local-
izes the position of any object. Upon a detection, the trajectory
tracking is stopped and the MAV tries to grasp the object
immediately. After either a successful grasping and dropping of
the object or after a number of unsuccessful grasp attempts, the
MAV continues sweeping from the last point on the trajectory.
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Fig. 5: Coverage trajectories based on Boustrophedon coverage with a
Dubins vehicle [32] and area decomposition into three distinct zones,
one for each MAV.

The coverage trajectories are collision free since the robots
are in independent zones. However, a MAV may need to pass
through zones belonging to other robots in order to drop
object after its successful grasping and as well in order to
return back into its assigned zone. During this maneuvers, we
take a proactive approach to ensure that a collision will not
occur. There are many challenges to develop such an onboard
collision free planner. Our planner uses a simple idea with
different altitudes for each MAV. However, while completing
the given task, the MAVs cannot stay only in these altitudes
during the mission, as they have to descend for events such as
grasping and consequent dropping of the objects. The position
of the MAV in x-axis and y-axis does not alter rapidly in these
events because they are realized by following strictly vertical
trajectories. Therefore, the MAV after leaving its assigned
altitude is assumed to be a static obstacle for other MAVs and
the finding the shortest free path between the starting and goal
points may be easily realized by a visibility graph method [33].

This strategy works due to sharing the estimated positions
of MAVs between robots. In the case of a communication
dropout, typically occurring during deployment of the multi
robot system in real world conditions, using a different altitude
for each MAV helps to minimize the likelihood of a collision.
Furthermore, since only one dropping zone is available, the
MAVs must coordinate themselves so that the dropping zone
is only occupied by one MAV at a time. When there is a com-
munication dropout, a simple time-window based approach is
used to resolves this issue.

V. STATE ESTIMATION

The state estimation algorithm must identify the state of
each robot and the location of the objects to be grasped.

A. State Estimation for Control
As shown in Section II, the platform is equipped with several

different sensors such as GPS, a height sensor, and cameras.

These sensors can be fused using the complementary nature of
each sensor in terms of accuracy and speed to obtain a reliable
state estimate to control the MAV. The Extended Kalman
Filter available on the PixHawk fuses the inertial sensors,
altitude pressure sensor, and the GPS receiver. However, for
the considered task, the precision and accuracy for grasping
is extremely important since the main goal is to be able
to transport the objects to a final destination. The position
estimate in the lateral axes is based on the estimate provided
by PixHawk, namely positions xp, and velocities ẋp. Although,
its precision might be satisfactory locally, it is prone to heavy
drift in short time ranges. This drift is corrected by differential
RTK GPS to ensure repeatability of experiments. Position
measurements from the RTK GPS receiver are fused using
a Linear Kalman Filter with model

A =

(
1 0
0 1

)
,B =

(
∆t
∆t

)
, (7)

where xe[n] = Axe[n−1] + Bu[n−1] is the linear system equation,
xe[n] = (x, y)>[n] is the state vector finally used for control,
and u[n] is the system input. The input vector u consists
of velocities obtained by differentiating positions xp, which
ensures that our filter does not introduce any more drift to the
resulting estimate when no RTK GPS corrections are involved
due to inaccuracies of ẋp. In situations when the position is
not being corrected, the resulting estimate follows the same
relative state trajectory as xp, just shifted according to the last
correction.

The multi-robot scenario requires a common reference frame
between all vehicles. The base of our Cartesian system is set to
predefined GPS coordinates, and its orientation is according to
the ENU convention, thus the 1st, 2nd and 3rd axis points to the
East, North and Upwards respectively. This is the convention
used in Section III to define the inertial frame. A point of origin
is measured using the RTK GPS, to which all independent
coordinate systems of all MAVs are then shifted after each
of them is powered up. The common base station of the
differential RTK GPS then ensures that all MAVs estimates are
corrected to lie within the same global coordinates. In this way,
the estimation of the altitude does not only rely on the pressure
sensor, which is not accurate. A Linear Kalman Filter is used to
incorporate altitude corrections from the differential RTK GPS,
the downward-facing TeraRanger height sensor, and the object
detector, which is able to provide an estimate of the relative
distance when flying above an object. The estimator provides
an option to switch between those sources of data depending
on the current task and the circumstances. Correcting the
altitude using the TeraRanger rangefinder is feasible when
flying above uneven ground, but it cannot be reliably used
when the downward-facing sensor is obstructed e.g., when
carrying an object, or when there might be a foreign object
on the ground. On the other hand, the RTK GPS is able to
provide precise relative altitude measurements, but only when
RTK FIX has been established, which depends on GNSS signal
strength and the quality of the communication link between
the base station and the MAV. Further, it is unaware of the
ground profile, so it cannot directly provide an estimate of the
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Fig. 6: One of the vehicle during a grasping task in the desert (on the left) and two vehicles during the navigation task after grasped one
object respectively (on the right), which are circled in green.

height above the ground. Finally, correcting the altitude using
data from the object detector might bring in unexpected steps
in the signal due to false positive detections. To be robust to
unreliable measurements, which can compromise the mission
in such critical settings, a safety mechanism for detecting
anomalies is used which can toggle off any of the altitude
sensors from being fused.

B. Object Detection and Localization
As mentioned in Section II, the Mobius camera is used to

detect the colored, round objects. This high-resolution camera
has a rolling shutter, so vibrations induced by the drone motors
can cause noisy effects in the image which makes the use
of geometry-based methods for object detection (e.g. Hough
transform) problematic [34]. Thus, we designed a computa-
tionally efficient ellipse detection algorithm, which relies on
the use of statistics that are robust to this type of noise [35].
The experiments have shown that a better object detection
performance is achieved with a high-resolution rolling shutter
camera than with a lower-resolution, global shutter camera of
similar price.

Unlike the original method [35], which used adaptive thresh-
olding to detect black-and-white patterns, our pixel labeling
was based on a 3D RGB look-up grid, which is either pre-
loaded or build semi-automatically during a calibration proce-
dure. During calibration, the MAV hovers (or is held by hand)
over the objects in a known spatial configuration and displays
the results of the detection on a GUI. The system operator can
indicate the object positions and false detections, creating and
refining a Hue-Saturation-Value Gaussian mixture model of
the object and background colors. Once the user indicates that
the detection performance is satisfactory, each cell of the RGB
look-up grid (corresponding to the given color) is classified as
an object or background using the Gaussian mixture model,
and the look-up grid is saved. The main advantage of the
RGB look-up grid is that it can implement any pixel-wise
classification method in a very efficient way – classification
of a given pixel is performed simply by retrieving its class
from the cell that corresponds to the pixel’s RGB values.

The detection algorithm is based on [35], which searches
for continuous segments of object-colored pixels, establishes
their bounding box, number of pixels, centroid, convexity,
and compactness, and uses these statistics to reject segments

that cannot correspond to circular objects. Finally, using the
known object size, elliptical shape and camera parameters, the
method calculates the relative 3D position of the object which
is transformed into the inertial coordinate frame. If the detected
object’s position and the ground distance obtained from the
robot’s state estimate are not within a threshold, then the object
is marked as a false positive. For details on the method, please
refer to [36]. Targets that are trying to be grasped are filtered
out in other MAVs to prevent simultaneous grasping of the
same target. The following empirical laws are adopted during
the manipulation task
• Objects which have not been seen for more than 5

seconds are deactivated.
• Objects which are deactivated for more than 3 seconds

are deleted from the map.
• Measurements from the object detector are paired with

objects in the map using a min-distance bipartite graph
matching, constrained by the color of the objects.

• Objects located outside of the working area are deleted
from the map, and new measurements in such areas are
discarded.

Additionally, the grasping attempts might not be successful
at all times. The approach also allows a temporary ban for 30 s
in a 4 m radius around a particular object to avoid deadlock
in the grasping state machine.

VI. EXPERIMENTAL RESULTS

In this section, we present results obtained in the demanding
environment of the desert of Abu Dhabi in the United Arab
Emirates as shown in Fig. 6. The key objective of this work is
to have a team of MAVs identify, grasp, and deliever a number
of objects in an environment with an unknown ground profile,
difficult wind, and unreliable communication.

The entire pipeline has been implemented in ROS, which
is also responsible for the management of communication
between MAVs. ROS by design is not suitable for distributed
implementation, so we make use of the ROS multimaster
package [37] that allows managing nodes, topics, services,
parameters across different robots. To reduce load in the com-
munication channels, only selected information (topics) are
shared with other team members such as the MAV position in
the global coordinate system, the current state of the high-level
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Fig. 7: Path for different vehicles during the grasping task of two different (on the left) and three different types of objects (on the right).
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Fig. 8: Grasping per cartesian axis with object estimation and MAV position, setpoint and setpoint errors.

state machine, the position of the object during grasping, and
the planned trajectory. This information is used in nodes for
collision free planning, fail-safe reactive collision avoidance,
and object estimation.

The proposed approach has been tested with a set of 2 and 3
MAVs as shown in Fig. 7 on the left and right, respectively.
The weight of each object is 70 g and is placed close to the
ground at different altitudes (see Fig. 6 right indicated with
green ellipses) in a total area of 70×45 m2. Each robot travels
an average of 250 m in the x and y Cartesian axes at an average
height of 10 m. In Fig. 7, each object is identified by the color
corresponding to the vehicle that performed the grasping. We
can clearly identify a total of 12 objects. Each vehicle picked
up and delivered at least 3 objects thus showing robustness of
the system across platforms. The dropping area is identified in
the top left corner of Fig. 7 by a red square on the ground.
During the experiments, the robots experienced wind speeds up
to 10 m/s. Regardless, over the course of 10 trials, the system
achieved an average success rate of 90% when grasping and
95% when dropping objects in the goal location.

We finally discuss the control performance during the nav-
igation and grasping task. In Fig. 8, we report on the results
for the grasping task executed by one of the platform. The
vehicle starts at 1.5 m above the object. During the descent
phase, which starts at 1 s, the vehicle tries to center with
respect to the object on the other two Cartesian axes. The
control errors are, on all axes, within few centimetres, which
is sufficient to successfully grasp the objects. The attached
multmedia material shows many trials with similar results
independently of the color and position on the terrain of the
objects. In addition, in Table I, we report the average mean
tracking errors before and after the grasping task. The errors

are equivalent on the same magnitude range, showing that our
control strategy is robust with respect to the weight changes
introduced by the payload.

Average Error Before Grasping (m) After Grasping (m)
x 0.032 0.045
y 0.038 0.071
z 0.067 0.110

TABLE I: Average position mean errors in meters during navigation
before and after the grasping task.

VII. CONCLUSION

In this work, we developed an approach to enable a team
of MAVs to identify, grasp, and deliver objects in challenging
desert-like environments. The key challenges included creating
a robust gripper for ferrous objects, scanning and locating
the objects of interest, uneven terrain, inconsistent wind, and
the potential for inter-robot collisions, all of which make the
proposed task extremely difficult. We showed the effectiveness
of our approach in real tests with the ability to have multiple
vehicles simultaneously collecting different colored ferrous
objects in the desert. We release the main platform hardware
components and designs as open source, which is useful for
other researchers to create an autonomous flying robots.We
believe that the proposed solution, both in terms of hardware
and algorithms, will be useful in industrial automation and
search and rescue scenarios. Future strategies will investigate
how to carry larger magnetic objects with multiple vehicles
in a cooperative manner. We will also explore improved state
estimation approaches, eliminating the need for GPS, which
would open up opportunities for GPS-denied tasks.
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