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ABSTRACT
Path planning and obstacle avoidance methods are often re-
quired for robots working in more and more complicated
environments. This paper introduces a novel approach
called Voronoi Strains for solving this task. The algorithm
applies particle swarm optimization of cubic splines which
are connected to strings. The initialization of the evolution-
ary algorithm is based on the Voronoi graph method as well
as on strains of bacteria. Strains whose evolution is stuck
in a dead end because of a local optimum die off. Only the
strain located close to the global optimum or the biggest
local optimum will survive the evolutionary process.

Different settings of PSO parameters have been tested
in various simulation experiments. The Voronoi Strains ap-
proach was also compared with other PSO methods using
a different kind of initialization.
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1 Introduction

Path planning and obstacle avoidance are very important in
most robot controlling systems. The goal of these tasks is
to find a trajectory from the actual positionS of the robot to
a desired goal positionG with respect to position and shape
of obstacles. The path can be optimized regarding length,
shape, executing time, power consumption, distance to the
obstacles or any other requirement.

Many different algorithms have been mentioned in lit-
erature [1], [2], [3], [4], but most of them only provide a set
of points between the positionsS andC or the trajectory is
assembled by simple components (usually lines and parts
of circles).

The algorithm presented in this paper results in a tra-
jectory composed from cubic splines. These splines are
advantageous for continual motion of the robot. They have
continuous first and second derivatives. It is also easy to
guarantee a smooth connection of the splines composed in
a chain and to set their initial conditions (the pointsS, C
and the headings of the robot in these points).

Optimization of the spline path using conventional
methods is too slow and therefore unusable in realtime ap-

plications. As a result many authors use standard path plan-
ning graph methods (e.g. visibility graph [5] or occupancy
grid [6]) where the edges of the cheapest path are smoothed
using splines [7]. In most cases this spline trajectory is sub-
optimal, because the optimization process only considers a
predefined part of the robot’s workspace.

Another possibility to optimize the trajectory is to use
a progressive approach, which improves the solution step
by step. The optimization process can be stopped every
time, which is required by realtime applications, but the
quality of the solution cannot be guaranteed. Evolution-
ary approaches (mainly genetic algorithm (GA) [8]) are
frequently used in mobile robot applications. In most of
these approaches the path is simply represented by a set of
waypoints [9], [10].

In the Vornoi Strains algorithm (VS) a different evolu-
tionary method called Particle Swarm Optimization (PSO)
is used. PSO is a relatively new approach and it usually
provides better results than GA in situations with a high
amount of local extremes. The same solution in such case
can be obtained with smaller number of evolutions by using
PSO. Voronoi Graphs (VG) are used to initialize the PSO
algorithm, in order to reduce further computational time.

PSO [11] is an optimization algorithm inspired by the
behavior of flocking birds. Each solution of the searched
nonlinear function (called particle) is represented by a set
of parameters. A group of these particles (called swarm)
has the same meaning as a population in genetic algo-
rithms.

It is supposed that the best position−→pi of each parti-
cle i, the best solution−→pg achieved by the population, ac-
tual positions−→xi(t) and velocities−→vi (t) of the particles are
known during the whole optimization process. Positions
and Velocities are updated in each iteration by the equa-
tions

vi(t) = wvi(t− 1)

+ Φ1

(
pi − xi(t− 1)

)

+Φ2

(
pg − xi(t− 1)

)
,

(1)

xi(t) = xi(t− 1) + vi(t), (2)

wherew is an inertia weight, which decreases linearly from
wstart to wend during the entire iteration process.Φ1 and
Φ2 are diagonal matrices weighted with a factorϕi, which



consists of random numbers drawn from a uniform distri-
bution between0 and1. The velocitiesvi(t) are limited to
values of the interval<−Vmax; +Vmax>.

The Voronoi Diagram [12], which is used for the ini-
tialization of the PSO in the Voronoi Strains algorithm, di-
vides the plane in spheres of influenceV (pi) consisting the
pointsP .

V (pi) = {y : |y − pi| < |y − pj|}, (3)

wherepj ∈ {P − pi} and pointsP are the centers of the
obstacles. Therefore the voronoi graph is situated as far
as possible from the obstacles. The shortest path in such a
graph is still needlessly long and also not smooth. But it is a
good estimation of the region, where the optimal trajectory
could be situated.

The rest of the paper is organized as follows. The
novel method called Voronoi Strains is described in section
2. The results presented in section 3 consist of two parts.
The best settings of the PSO parameters and their influence
on the optimization process are described in subsection 3.1.
After this the VS algorithm is compared with simple PSO
planning methods in subsection 3.2. Section 4 consists of
the conclusion and suggestions for future work.

2 Algorithm description

2.1 Particle description

The path planning problem for a carlike mobile robot can
be described by a search in the space of functions. We re-
duce this space to a subspace which only contains strings
of cubic splines [13]. Splines are natural for robot move-
ments. They are easy to implement and could be smoothly
connected together. The mathematical notation of a spline
in 2D space could be:

f(t) = axt
3 − bxt

2 + cxt+ dx

g(t) = ayt
3 − byt

2 + cyt+ dy,
(4)

wherea, b, c, d are constants defined by

a = 2P0 − 2P1 + P ′
0 + P ′

1

b = −3P0 + 3P1 − 2P ′
0 − P ′

1

c = P ′
0

d = P0,

(5)

wheret ∈< 0, 1 >. Pi, P
′
i are vectors that define the spline

in the space. According to these equations each spline is
only defined by the pointsP0 (starting point),P1 (final
point) and the tangent vectorsP ′

0, P ′
1. To guarantee con-

tinuity of the whole path, every two neighboring splines
in the string share one of the terminal points and it’s cor-
responding tangent vector. Starting point, final point and
the corresponding tangent vectors of the string of splines
are defined by initial conditions. The total number of vari-
ables that define the whole trajectory in 2D is therefore only

n   splineth1   splinest

2    splinend

P1,x P1,y P'1,x P'1,y P2,x P2,y P'2,x P'2,y
Pn-1,x Pn-1,yP'n-1,x P'n-1,y

...

Figure 1. Each particle consists of a vector of spline pa-
rameters.

4(n − 1), wheren denotes the number of splines in the
string. The structure of the particles used for optimization
is shown in Figure 1.

2.2 Initialization

Normally evolutionary algorithms are based on a randomly
generated initial population that should uniformly cover the
whole search space. In our case, the position of an optimal
solution is approximately known. That is why we generate
the population close to this area. As a result the algorithm
converges faster but the ability to escape local minima is re-
duced, because the population diversity is lost. This causes
problems when the estimation of the solution is not correct.

The basic idea of the Voronoi Strains approach is to
suppose that the optimal spline trajectory probably is situ-
ated close to the shortest path in the Voronoi Graph. The
optimal trajectory is not only the shortest spline path from
the actual to the desired position. It is also the minimum
of the fitness function (8). Likewise edges of the VG are
evaluated by

f(e) = l(e) +

(
α

mino∈O d(e, o)

)2

, e ∈ E (6)

whereα has the same value as in the fitness function,l(e)
is the length of edgee andd(e, o) is the shortest distance
between edgee and the obstacleo.

The ”cheapest” path from nodeS to nodeG in the
evaluated graph is the area where the optimal spline tra-
jectory is situated with the highest probability. The opti-
mization process can fail in situations that show many lo-
cal extremes in this region. Then the PSO approach cannot
escape and therefore cannot reach the optimal solution be-
cause of a low population diversity.

This problem is solved by creating new strains in the
population. The price of the edges of the cheapest path
always is risen two times and the next strain is located along
the new cheapest path in the graph. The new and the old
paths can contain the same edges, but these ”bridges” are
usually short.

The number of particles in each strain is defined by

s(i) = stotal
2m−i

2m − 1
(7)

wherestotal is the total number of particles in the popula-
tion andm is the number of strains.
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Figure 2. Voronoi diagram and the cheapest paths used for
the strain initialization.

During the initialization of the PSO algorithm the
Voronoi paths are divided inton−1 parts of identical length
(n is the number of splines in the string). The control points
Pi of the splines are randomly generated on each part in
consideration of their geometric representation. The vec-
torsP ′

i are initialized in the direction of
−−−−→
Pi−1Pi +

−−−−→
PiPi+1.

A basic example of the cheapest paths in a Voronoi graph
is shown in Figure 2.

2.3 Particle evaluation

The rating (fitness) of a particle is calculated by the fit-
ness functionf . The global minimum of this function cor-
responds to a smooth and short trajectory. Therefore the
optimization functionf must strictly penalize trajectories
that possibly cause a collision with an obstacle. Other con-
straints (e.g. smooth derivation) are guaranteed by the par-
ticle construction (see section 2.1) and need not to be in-
cluded in the fitness functionf .

In this paperf is defined as

f = flength + αfdistance, (8)

whereα determines the influence of obstacles. The dis-
tance between the calculated trajectory and the obstacles
growths with a higher value ofα, but such a path can be
unnecessarily long. Conversely the trajectory can be too
close to obstacles if the value ofα is set too low.

The variableflength grows with the trajectory length
and is computed by

flength =

∫ 1

0

√(
f ′(t)

)2
+
(
g′(t)

)2
dt

lMIN
(9)

wherelMIN is the Euclidean distance between actual and
desired position of the robot.

Table 1. Mean values of the fitness function of the best
particle after 50 iterations for different values ofVmax and
wstart.

Vmax

wstart 10 70 150 220 300
0.1 14.51 11.10 11.21 11.65 11.86
0.2 14.34 11.03 11.18 11.52 11.57
0.4 13.43 10.98 11.24 11.43 11.65
0.6 12.28 11.00 11.43 11.80 12.00
0.8 11.82 11.23 11.82 12.06 12.39

The second part of the fitness functionfdistance is in-
versely proportional to the minimal distance to the obsta-
cles. This function ”pushes” the path into free space and
can be described by

fdistance =

(
min
o∈O

(
min

t∈<0;1>
(d(t))

))−2

, (10)

whereO is the set of all obstacles in the robots configura-
tion space and

d(t) =

√(
f(t)− ox

)2
+
(
g(t)− oy

)2
. (11)

3 Results

The Voronoi Strains algorithm was intensively verified in
two experiments. Both are based on a statistically pro-
cessed set of runs, because each run of the evolutionary
approaches is unique and thus the final trajectories are dif-
ferent. Each value presented in the following subsections
was obtained from 400 runs of the algorithm.

The first experiment was made to study the influence
of different PSO algorithm parameters on the quality of the
resulting trajectories. In the second one we compared the
Voronoi Strains algorithm with PSO approaches with a dif-
ferent initialization part.

3.1 PSO parameter settings

All results have been obtained by the VS algorithm using
the following constants:wend = 0.05,ϕ1 = 2 andϕ2 = 2.
The resulting trajectories were composed from 9 splines
(dim(xi) = 36) and the population consisted of 28 parti-
cles (4 particles in the 1th strain, 8 in the 2nd strain and
16 in the 3rd strain). Each optimization process was in-
terrupted after 50 iterations. 150 circular obstacles were
distributed randomly in the workspace.

The mean fitness values of the experiments with dif-
ferent settings ofwstart andVmax (equations (1) and (2))
are presented in table 1. The best results were obtained
with wstart = 0.4 andVmax = 70. It is interesting to
compare these with the simple PSO planning method us-
ing random initialization [14], where the optimal values are
wstart = 0.6 andVmax = 250. The most significant is
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Figure 3. Progression of the best particle with different
settings fordim(xi).

the difference ofVmax. Particles in the VS algorithm are
initialized close to the optimal solution and they are kept
in this position by the low value for the maximal velocity.
If Vmax is too big, the particles start to explore the whole
space and the advantage of the initialization is lost. Con-
trariwise the PSO algorithm with a too low value ofVmax

can converge only slowly and the optimal trajectory cannot
be found during 50 iterations.

A low value ofwstart is advantageous to the VS ap-
proach, because the exploratory process is skipped (due to
better initialization) and the optimization starts directly in
exploitative mode. During the exploratory mode of the
PSO the whole workspace is explored andwstart has a
big value. Exploitative mode commonly follows where the
value ofwstart is reduced and the space is searched only
close to the most promising solution.

The progression of the mean fitness value of the best
particle is presented in figure 3 for different numbers of
splines used to evolute the trajectory. The lowest mean
value of the best particle after 50 iterations was achieved
with dim(xi) = 36 (10 splines in the string). A higher di-
mension results in a better initial population (higher mean
value of the best particle), but also slows down the opti-
mization process. Contrariwise the PSO is sped up if the
value ofdim(xi) is low, but the space is reduced and the
optimal solution can be of poor quality (e.q. not free of
collisions).

A solution of the situation with 150 randomly gener-
ated obstacles is presented in figure 4. The optimal trajec-
tory (thick line) was found by the PSO algorithm with opti-
mal values for the parameters (dim(xi) = 36,wstart = 0.4
andVmax = 70) after 50 iterations. Figure 5 shows one of
the places, where the randomly generated initial trajectory
(thin line) is situated too close to an obstacle. After the
optimization the path is safe.

Table 2. Mean fitness values and covariances of the fitness
function of the best particle after 50 iterations.

method 150 obstacles 10 obstacles
PSO-simple 56.56 (444.53) 1.68 (0.0047)
PSO-line 21.31 (44.57) 1.67 (0.0039)
Voronoi Strains 10.98 (0.89) 1.67 (0.0035)

3.2 Comparison of PSO methods with different initial-
ization approaches

In the experiments described in this section three different
algorithms were compared in two dissimilar scenarios. The
first algorithm (PSO-simple) only uses basic initialization.
Particles in the initial population are generated randomly
and so the control points of the splines cover the complete
workspace and the trajectories possibly contain loops. In
the second approach (PSO-line) it is supposed that the op-
timal trajectory is short and without loops or back motion.
Therefore the line connecting the pointsS andG is di-
vided inton same parts (similar as in section 2.2) and the
control pointsPi are randomly generated close to the di-
viding points. The VectorsP ′

i are initialized in direction−−−−→
Pi−1Pi +

−−−−→
PiPi+1.

The first scenario is identical to the situation with 150
obstacles used in section 3.1 and demonstrates the ability
of the VS algorithm to work in complicated environments.
The mean fitness value and the covariance of the fitness
function of the best particle after 50 iterations is presented
in table 2. The mean solution achieved by the VS ap-
proach is much more optimized than the trajectories found
by other methods, but the most significant fact is found by
comparing the covariances. The low covariance in the VS
approach shows it’s high robustness in comparison to the
PSO-simple and the PSO-line method.

The second scenario consists of only 10 obstacles in
a workspace of identical size to the one in the first experi-
ment. The results presented in the second column of table 2
illustrate a low effect of the initialization on the optimiza-
tion process in such a simple situation. The biggest ad-
vantage of the VS approach (missing exploratory mode) is
lost, because in this case the exploratory mode in the simple
PSO approach has a very short duration.

4 Conclusion and future Work

In this paper we presented a novel path planning approach
that could be useful in complicated environments. The
Voronoi Strains algorithm was tested in two kinds of sit-
uations with a different number of obstacles. It was also
compared to similar PSO methods.

The algorithms achieved interesting results in
workspaces with a high number of obstacles. In these com-
plicated environments it found much better solutions than
the PSO-line and the PSO-simple algorithm with the same
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Figure 4. The final path (thick line) found by VS after 50
iterations and the best path in the initial population (thin
line).

amount of iterations. Additionally the VS approach proved
to be much more robust and it’s dependence on the initial
random population was lower.

The VS algorithm is based on the initial population
that is placed around the cheapest paths in the Voronoi
graph. The evolutionary process is therefore much faster
and in addition the population is protected against the loss
of diversity. The approach also has a bigger probability to
avoid local minima. The Experiments nevertheless demon-
strated that the optimization process is not sped up by the
VS approach, if the environment is not so complicated.

In the future we would like to adapt the algorithm to
be utilizable in dynamical environments. Our idea is to
use the old population and continue the optimization with
a partly changed fitness function. Such an approach must
ensure to keep the diversity of the population which is nec-
essary for the PSO algorithm to work properly.

Another possible way to go might be to use the al-
gorithms with other types of initial populations (maxi-
mum entropy based, systematic coverage, Visibility Graph
based, etc.) for further comparisons. The PSO algorithm
could also be compared to other evolutionary methods (Ge-
netic algorithms, simulated annealing, ant colony, etc.).
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